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ABSTRACT

We study the monoid of self homotopy equivalences of an R-nilpotent space,
with the goal of understanding the actions of a cyclic group of order p on a
simply-connected homologically finite space with uniquely p-divisible homo-
topy groups.

§1. Introduction

Let p be a prime and let R be the ring Z[1/p]. The aim of this note is to use
the ideas of Dror and Zabrodsky [DZ] to study the topological monoid Aut" X
of homotopy self-equivalences of a connected R-nilpotent space X [BK: III §5]
under the assumption that X is homologically finite-dimensional. The main
technical result (§2) states that the classifying spaces of certain natural
submonoids of Aut® X are themselves R-nilpotent.

There are two direct applications. Let ¢ be a cyclic group of order p with
chosen generator s. Any basepoint-preserving map f: Ba — B Aut® X gives rise
to a self-equivalence f(s) of X as well as to an induced automorphism f{s), of
the integral homology H, X.

1.1. PROPOSITION. Assume that X is a connected R-nilpotent CW-complex
such that H, X vanishes for sufficiently large i. Let f, g: Bo — B Aut® X be two
basepoint-preserving maps such that f(s), = g(s),. Then f and g are freely
homotopic, i.e., homotopic through a homotopy that does not necessarily
preserve basepoints.
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1.2. REMARK. The homotopy of 1.1 can be chosen so that it carries the
basepoint of Ba to a loop in B Aut" X which represents a self-equivalence of X
inducing the identity map on homology (§3). It seems difficult in general to do
better than this.

1.3. PROPOSITION. Let X be as in 1.1 and let t: X — X be a homotopy
equivalence with the property that (t*), — 1 is a nilpotent endomorphism of
H, X. Then there exists a basepoint-preserving map f: Bo — B Aut® X such that

(i) f(s): X — X commutes up to homotopy with t, and

(ii) f(s), — t, is a nilpotent endomorphism of H,X.

1.4. REMARKS. In 1.3, ¢7 stands for the p-fold composite of ¢ with itself.
Conditions (i) and (ii) actually determine fup to free homotopy (§3). Note (3.1)
that if (¢7), is the identity map of H, X then f(s), equals ¢,.

1.5. REMARKS. Propositions 1.3 and 1.1 can be interpreted, respectively,
as existence and uniqueness results for actions of ¢ on spaces homotopy
equivalent to X [DDK].

The author would like to thank Shmuel Weinberger for discussion of these
questions.

§2. The main result

Let X be a connected R-nilpotent CW-complex such that H; X vanishes for
sufficiently large i. An R-flag ® for H,X is a collection of finite R-submodule
filtrations

0C®,,C---CD,CPD=HX

of the integral homology groups of X (recall that H;, X is isomorphic to
H,(X, R) [BK: V, §3]). Any self-equivalence ¢ : X — Xinducesmaps ¢, : H; X —
H, X; we will say that ¢ is upper triangular with respect to @ if 1, (P, )=, ;
(V i, j) and that ¢ is strictly upper triangular with respect to @ if in addition the
induced automorphisms of the quotients ®, ;/®, ;,, are identity maps. Let
Aut®(X, ®) denote the submonoid of Aut® X consisting of all self-equivalences
which are strictly upper triangular with respect to ®.
The goal of this section is to prove the following proposition.

2.1. PrRoOPOSITION. Let X be a connected R-nilpotent CW-complex such that
H, X vanishes for sufficiently large i, and let ® be an R-flag for H X. Then the
classifying space B Aut®(X, ®) is R-nilpotent.
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2.2. LEMMA. Let G be a nilpotent group and M an R-module upon which G
acts nilpotently. Then there is a unique nilpotent action of G®R on M
extending the given action of G. Moreover, any map f: M — M’ of R-modules
with nilpotent G-action respects the extended nilpotent action of G @ R.

REMARKs. Here G @ R denotes the R-localization of the nilpotent group G
[BK: V, §2].

PrOOFOF 2.2. Let S denote the semi-direct product of G with M. It follows
from naturality and the fiber lemma [BK: II, 4.8] that the unique nilpotent
action of G @ R on M extending the given action of G is the one provided by

the action of G ® R on the first homology group of the fiber in the localized
fibration sequence

K(M,1)—RK(S, 1)~ R, K(G,1)=K(GOR, 1).
The functoriality property of the extended action is immediate.

2.3. REMARK. The umqueness and functorality provisions of 2.2 imply
that if G respects a given filtration of M and acts trivially on the associated
graded, then the same is true of G ® R.

ProOF OF 2.1. Let
X— U BAutX, ®)

be the fibration over B Aut*(X, ®) associated to the action of Aut*(X, ¢) on X.
The fibration ¢ is universal for fibrations E — B with fiber X such that the
monodromy action of B on H, X is strictly upper triangular with respect to ®
[DZ, 4.2]. The space B Aut®(X, ®) is nilpotent [DZ, 3.5]. The fibration ¢ is
nilpotent ([BK: II, §4], [DZ, §3]) and so by [BK: II, 4.2] there is a localized
fibration sequence

X— R,U—% R_BAutX(X, ®)

which is also nilpotent; in particular, in the fibration R_g the fundamental
group of the base acts nilpotently on the homology of the fiber. By 2.3, then,
this monodromy action of 7, R,, B Aut®(X, ®) = (7, B Aut*(X, ?)) @ Ron H X
is strictly upper triangular with respect to ® (i.e. the action must be the
canonical extension (2.2) of the nilpotent action of z; B Aut*(X, ®) on H, X). It
follows that R, g is classified by a map R, B Aut®(X, ®)— B Aut’(X, ®). The
composite of this classifying map with the localization map B Aut*(X, ®)—
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R B Aut®(X, ®) is clearly homotopic to the identity. Thus B Aut®(X, ®), as a
homotopy retract of the R-nilpotent space R, B AutX,®), is itself R-
nilpotent.

§3. Two applications

In this section o will denote a cyclic group of order p with chosen generator s.
The following lemma can be proved either by a direct obstruction-theory
argument or by an application of the homotopy inverse limit spectral sequence
of [BK: XI, §7].

3.1. LemMMA [DWZ, 2.3]. Let

F—E-5Bo

be a fibration sequence in which the fiber F is connected and R-nilpotent. Then
the space of sections of q is connected and R-nilpotent.

PrOOF OF 1.1. Let Aut'(X, H, X) denote the submonoid of Aut" X consist-
ing of self-equivalences which act as the identity on H, X, and let G denote the
discrete quotient group m, Aut®(X)/n, Aut®(X, H,X). There is a fibration
sequence

B Aut*(X, H,X)— B Aut® X —— BG

in which the fiber is connected and R-nilpotent (2.1). It follows from 1.1 that
if f,g:Ba— BAut® X are basepoint-preserving maps such that gq-f is
homotopic as a pointed map to g - g, then f and g are themselves homotopic by
a homotopy which leads the basepoint of Bo through a loop in the fiber
B Aut(X, H,X). This completes the proof.

3.2. LeMMA. Let M be an R-module and t : M — M an automorphism with
the property that t* —1: M — M in a nilpotent endomorphism. Then there
exists a unique automorphism s of M such that

(i) s commutes with t,

(ii) s? =1, and

(iil) s — t: M — M is a nilpotent endomorphism.

Proor. The action of t on M gives a map R[T, T~']— Endg(M) sending T
to the automorphism ¢; since ¢? — 1 is nilpotent, this factors through a
homomorphism A : R[T, T~'}/(T? — 1)* — Endg(M) for some k > 0. By Hen-
sel’s lemma there is a unique element S of R[T, T~')/(T? — 1)* such that



158 W. G. DWYER Isr. J. Math.

S? =1 and S'is congruent to 7 modulo (77 — 1); let s = A(S). It is clear that s
satisfies (i)-(iii) and has the additional advantage of being a polynomial in ¢
and 1~'. Let s’ be any other automorphism of M satisfying (i)-(iii). Since s’
commutes with s and ¢, the difference element s’ —s =(s’—¢t)+ (¢t —s)is a
nilpotent endomorphism of M. Write

NP =+ —3s)? =5+ psP Y (s"—s)+ -+

Sothat
’ p—1 4 p—2fc!
0—(S —S)<ps +( )S (S _S)+”’).

The second factor on the right-hand side of the last equation is an invertible
endomorphism of M, since ps?~! is invertible and the rest of the sum consists
of a nilpotent endomorphism that commutes with s. It follows that s’ — s is
Zero.

ProoF oF 1.3. Let ® be the R-flag for H, X given by the images of powers
of t? — 1, so that ¢ is upper triangular with respect to ® and ¢ is strictly upper
triangular. Let Aut®(X : ®) denote the monoid of self-equivalences of X which
are upper triangular with respect to ® and let G be the discrete quotient group
7o Aut®(X : @)/ 7y Aut™(X, ®). There is a fibration sequence

B Aut'(X, ®) —— B Aut"(X: &) —— BG

in which the fiber is R-nilpotent (2.1). The hypotheses of the proposition give a
commutative diagram

1

BZ BAut'(X: ®)
q’J l q
Bo BG

in which g’ carries the generator x of Z to s and 7, carries x to ¢. Now perform
fiberwise localization [BK: I, §8] on g and on g’; this has no effect on ¢ because
the fiber of ¢ is R-nilpotent. What results is a diagram

R_(BZ) B Autt(X : d)

| |

Bo Bo
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in which the left-hand vertical arrow is a principal fibration with fiber
R_BZ~ BZ[1/p]. Since HYBo, Z[1/p]) vanishes, it is clear that the space

R (BZ) is actually a product Bo X BZ[1/p]. Let f: Bc — B Aut* X be the
composite

Bo — R (BZ)— B Aut®(X : ®)— B Aut® X.

Conditions (i) and (ii) follow immediately. The uniqueness property 1.4 of f
follows from 3.2 and 1.1.
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